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Abstract

Phylogenies—the evolutionary histories of groups of
organisms—are one of the most widely used tools through-
out the life sciences, as well as objects of research within
systematics, evolutionary biology, epidemiology, etc. Al-
most every tool devised to date to reconstruct phylogenies
produces trees; yet it is widely understood and accepted
that trees oversimplify the evolutionary histories of many
groups of organims, most prominently bacteria (because of
horizontal gene transfer) and plants (because of hybrid spe-
ciation).

Various methods and criteria have been introduced for
phylogenetic tree reconstruction. Parsimony is one of the
most widely used and studied criteria, and various accu-
rate and efficient heuristics for reconstructing trees based
on parsimony have been devised. Jotun Hein suggested
a straightforward extension of the parsimony criterion to
phylogenetic networks. In this paper we formalize this con-
cept, and provide the first experimental study of the qual-
ity of parsimony as a criterion for constructing and evalu-
ating phylogenetic networks. Our results show that, when
extended to phylogenetic networks, the parsimony criterion
produces promising results. In a great majority of the cases
in our experiments, the parsimony criterion accurately pre-
dicts the numbers and placements of non-tree events.
Keywords: phylogenetic networks, maximum parsimony,
horizontal gene transfer.

1 Introduction

Phylogenies—the evolutionary histories of groups of
organisms—play a major role in representing the interrela-
tionships among biological entities. Many methods for re-
constructing and studying such phylogenies have been pro-
posed, almost all of which assume that the underlying his-
tory of a given set of species can be represented by a binary
tree. Although many biological processes can be effectively
modeled and summarized in this fashion, others cannot: re-

combination, hybrid speciation, and horizontal gene trans-
fer result in networks of relationships rather than trees of re-
lationships. While this problem is widely appreciated, there
has been comparatively little work on computational meth-
ods for estimating and studying evolutionary networks (see
[15, 17] for surveys of work on phylogenetic networks).

Due to the pervasiveness of phylogenies, many different
methods have been proposed for their reconstruction. Par-
simony has been studied and used extensively for phyloge-
netic trees [22]; it is based on a minimum-information prin-
ciple (similar to Occam’s razor): in absence of information
to the contrary, the best explanation for the observed data
is that involving the smallest number of manipulations—in
the case of evolutionary histories, that involving the fewest
evolutionary events. As pointed out by Hein [10, 11], par-
simony can be extended to phylogenetic networks: he ob-
served that each individual site in a set of sequences label-
ing a network evolves down a tree contained in the network
(i.e., a tree whose edges are edges of the network). In con-
sequence, the obvious extension is to define the parsimony
score of a network as the sum, over all sites, of the parsi-
mony score of the best possible tree contained within the
network for each site.

This generalization suffers from a major flaw: adding
reticulation events (in the form of additional edges) to the
network can only lower the parsimony score, since intro-
ducing a new edge cannot increase the score of any site, but
may help lower the score of some. In consequence, this cri-
terion may lead to a gross overestimation of the number of
reticulation events needed to explain the data. In this paper,
we generalize Hein’s parsimony concept to blocks of sites,
rather than individual sites, and study the performance of
the generalized criterion. This generalization is a more real-
istic reflection of the biology of reticulate evolution: blocks
of sites, or genes, are inherited as single units from their
“parents”.

Reconstructing maximum parsimony phylogenetic net-
works is NP-hard, since it is a generalization of the max-
imum parsimony problem on phylogenetic trees, which is
NP-hard [4, 8]. Further, whereas computing the parsimony



score of a given phylogenetic tree can be done in time linear
in the number of tree nodes, using Fitch’s algorithm [6, 9],
computing the parsimony score of phylogenetic networks is
a hard problem (possibly NP-hard). However, the problem
is fixed-parameter tractable (FPT) [5], as we show.

Since we are interested in assessing the quality of the
parsimony criterion for phylogenetic networks (rather than
heuristics), and due to the absence of any efficient algo-
rithms for solving the problem, we implemented an exhaus-
tive search method that traversed the entire space of net-
works, and considered the parsimony score of every net-
work in the space. We considered a version of the phylo-
genetic network reconstruction problem that applies to hor-
izontal gene transfer: given an organismal (species) tree,
compute an additional set of edges whose addition to the
tree explains the horizontal gene transfer events that oc-
curred during the evolutionary history of the sequences.
Since these events are unknown, we apply the parsimony
criterion and seek the solution that is optimal with respect to
this criterion. Our experimental results show that the parsi-
mony criterion, when used carefully, can be very promising
in both reconstructing phylogenetic networks, and quantify-
ing their quality (in terms of capturing the true evolutionary
events).

2 Phylogenetic Networks

When events such as horizontal gene transfer occur, the
evolutionary history of the set of organisms may not be
modeled by phylogenetic trees; in this case, phylogenetic
networks provide the correct model. In horizontal gene
transfer (HGT), genetic material is transferred from one
lineage to another; see the phylogenetic network in Fig-
ure 1(a). In an evolutionary scenario involving horizon-
tal transfer, certain sites (specified by a specific substring
within the DNA sequence of the species into which the
horizontally transferred DNA was inserted) are inherited
through horizontal transfer from another species (as in Fig-
ure 1(c)), while all others are inherited from the parent (as
in Figure 1(b)). Thus, each site evolves down one of the
trees induced by the network.

We adopt the general model of phylogenetic networks
formalized by Moret et al. [18]

Definition 1 A phylogenetic network N = (V,E) with a
set L ⊆ V of n leaves, is a directed acyclic graph in which
exactly one node, the root, has no incoming edges, and all
other nodes have either one incoming edge—tree nodes—or
two incoming edges—reticulation nodes.

In this paper, we focus on binary networks, i.e., networks in
which the outdegree of a tree node is 2 and the outdegree
of a reticulation node is 1. A tree T is contained (or in-
duced) inside a network N , if T can be obtained from N by

removing exactly one of the two edges incoming into each
reticulation node in N and using any applicable forced con-
tractions. We denote by T (N) the set of all trees induced
by a network N . While a phylogenetic network models the
evolutionary history of a set of organisms, the evolutionary
histories of individual genes are still trees [16], which are
the trees contained inside the network.

Reticulation events impose time constraints on the phy-
logenetic network. [18] A phylogenetic network N =
(V,E) defines a partial order on the set V of nodes. If we
associate time t(u) with node u of N , then, if there exists
a directed path p from u to some other node v such that p
contains at least one tree edge, we must have t(u) < t(v)
in order to respect the time flow; moreover, if e = (u, v) is
a network edge, then we must have t(u) = t(v), because
hybridization is, at the scale of evolution, an instantaneous
process. Given a network N , we say that p is a positive-time
directed path from u to v, if p is a directed path from u to
v and p contains at least one tree edge. Given a network N ,
two nodes u and v cannot co-exist in time if there exists a
sequence P = 〈p1, p2, . . . , pk〉 of paths such that: (1) pi is
a positive-time directed path, for every 1 ≤ i ≤ k, (2) u
is the tail of p1, and v is the head of pk, and (3) for every
1 ≤ i ≤ k − 1, there exists a network node whose two
parents are the head of pi and the tail of pi+1. Since events
such as horizontal gene transfer occur between two lineages
(nodes in the network) that co-exist in time [16, 19, 18], a
phylogenetic network N must satisfy the following prop-
erty:

• If two nodes x and y cannot co-exist in time, then they
cannot participate in a reticulation event, that is, the
network cannot include either of the two edges (x, y)
and (y, x).

It is important to note that the aforementioned model and
temporal constraints may be violated in practice, due to in-
complete sampling, extinction, etc. Moret et al. addressed
these issues and extended the phylogenetic network models
to capture these scenarios, whenever they may occur [18].

3 The Parsimony Criterion

Parsimony is one of the most popular methods used for
phylogenetic tree reconstruction. Roughly this method is
based on the assumption that “evolution is parsimonious”,
i.e., the best evolutionary trees are the ones that minimize
the number of changes along the edges of the tree. We now
formulate this concept.

Definition 2 The Hamming distance between two equal-
length sequences x and y, denoted by H(x, y), is the num-
ber of positions j such that xj �= yj .
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Figure 1. (a) A phylogenetic network that consists of an organismal tree and an additional edge that
corresponds to an HGT event. The two (gene) trees contained inside the network are shown in (b)
and (c).

Given a fully-labeled tree T , i.e., a tree in which each node v
is labeled by a sequence sv over some alphabet Σ, we define
the Hamming distance of an edge e ∈ E(T ), denoted by
H(e), to be H(su, sv), where u and v are the two endpoints
of e. We now define the parsimony score of a tree T .

Definition 3 The parsimony score of a fully-labeled tree T ,
is

∑
e∈E(T ) H(e). Given a set S of sequences, a maximum

parsimony tree for S is a tree leaf-labeled by S and as-
signed labels for the internal nodes, of minimum parsimony
score.

Given a set S of sequences, the parsimony problem is to
find a maximum parsimony phylogenetic tree T for the set
S. Unfortunately, this problem is NP-hard, even when the
sequences are binary [4, 8]. One approach that is used in
practice is to look at as many leaf-labeled trees as possi-
ble, and choose one with a minimum parsimony score. The
problem of computing the parsimony score of a fixed leaf-
labeled tree is solvable in polynomial time [6, 9].

3.1 Parsimony on Phylogenetic Networks

The evolutionary history of a site i in a set S of se-
quences that evolved on a network N is captured by one
of the trees contained inside the network N . Therefore, a
natural way to extend the tree-based parsimony score to fit
a dataset that evolved on a network is to define the parsi-
mony score for each site as the minimum parsimony score
of that site over all tree contained inside the network. This
extension was first introduced by Hein [10, 11] in the con-
text of meiotic recombination. We now formalize a slightly
more general definition of parsimony.

Definition 4 The parsimony score of a network N leaf-
labeled by a set S of taxa, is

NCost(N,S) :=
∑

bi∈B(minT∈T (N) TCost(T, bi))

where B is a set of blocks of equal length that partition that
sequences, TCost(T, bi) is the number of changes of block
bi on tree T , and T (N) denotes the set of trees contained
inside network N .

Based on this criterion, we would want to reconstruct a phy-
logenetic network whose parsimony score is minimized. In
the case of horizontal gene transfer, Lerat et al. have ob-
served that the underlying organismal tree is reconstructible
[14]. Hence, the problem of reconstructing phylogenetic
networks in this case becomes one of computing a set of
edges whose addition to the organimsal tree “explains” the
horizontal gene transfer events. This is formalized as fol-
lows.

Definition 5 FIXED-TREE MP ON PHYLOGENETIC NET-
WORKS (FTMPPN):

Input: a set S of aligned biomolecular sequences, a
tree T leaf-labeled by S, and a bound B.

Output: a phylogenetic network N consisting of T and
at most B additional non-tree edges so as to minimize
NCost(N,S).

Notice that based on Definition 4, whenever we add an extra
non-tree edge to a given network (or tree, which is a special
case of networks), the parsimony score of the network either
remains the same or drops, which necessitates bounding the
number of extra non-tree edges. Although this bound in
not known a priori, we show experimentally that the rate of
decrease in the parsimony score (as a function of the number
of added edges) can be used in most cases to infer the bound
and provide a stopping rule. Solving the FTMPPN problem
requires computing the parsimony score of a fixed network.
This is formalized as follows.

Definition 6 PARSIMONY SCORE OF PHYLOGENETIC

NETWORKS (PSPN):



Input: a set S of aligned biomolecular sequences, and
a phylogenetic network N leaf-labeled by S.

Output: NCost(N,S).

The PSPN problem is of unknown complexity, yet, it is
straightforward to show that the problem is solvable in poly-
nomial time for a fixed B.

Theorem 1 The PSPN problem is solvable in polynomial
time when B is constant.

Proof: Let N be a phylogenetic network leaf-labeled by
a set S of n sequences over an alphabet Σ, each of length
k, and let B be the number of hybrids in N . The number
of trees induced by N is O(2B). To compute the parsi-
mony score of a site i on a tree T with n leaves it takes
O(|Σ|n) (Fitch’s algorithm [6]). Therefore, to compute the
parsimony score of N on the set S of sequences it takes
O(2B |Σ|nk), which is polynomial when B is fixed. �

3.2 Related Work on the Parsimony of Networks

In a series of papers [2, 1, 3, 12], the authors proposed
“median networks” as a model for representing the evolu-
tionary histories in the presence of non-treelike processes,
and used an approach that combined Kruskal’s algorithm
for finding minimum spanning trees with Farris’ maximum
parsimony heuristic algorithm. This work does not extend
the parsimony criterion beyond trees, nor does it give a
model for phylogenetic inference; rather, it gives a model
for graphical representation of datasets when trees fail to be
the appropriate model.

In [7], the author defines a “most parsimonious network”
as an alternative to consensus trees. In studying population
data, it is common to have many equally possible parsimo-
nious trees. The author proposes most parsimonious net-
works as a model that reconciles all the trees in one net-
work such that the network contains all most parsimonious
trees and no other trees. The author also proposes a simple
set of loop-breaking rules that should find all the “resident”
most parsimonious trees and no other trees should be ob-
tainable from the rules. There are two main differences be-
tween our approach and the approach in [7]: first, our phylo-
genetic networks do represent evolutionary histories where
the internal nodes of the network represent ancestral taxa,
whereas in [7] the networks are graphical representation of
the data that do not reflect phylogenetic inferrence. Second,
we extend the parsimony criterion from trees to networks,
whereas in [7] the parsimony criterion is not defined for net-
works.

4 Experiments

To generate networks with different number of HGT
edges, we used an incremental network generation algo-
rithm (outlined in Figure 2). To handle the huge number of
networks (over 10 million networks were inspected for the
case of three HGT events), we developed two parallel im-
plementations of our network generation algorithm: a static
scheduling algorithm (outlined in Figure 3) and a dynamic
scheduling algorithm (outlined in Figure 4).

4.1 Settings

We used the r8s tool [21] to generate a random birth-
death phylogenetic tree on 10 taxa (shown in Figure 5(a)).
The r8s tool generate molecular clock trees; we deviated
the tree from this hypothesis by multiplying each edge in
the tree by a number randomly drawn from an exponential
distribution. The expected evolutionary diameter (longest
path between any two leaves in the tree) is 0.2. We then
considered two HGT events: close HGT event, as shown
in Figure 5(b), involves two closely related species, and di-
vergent HGT event, as shown in Figure 5(c), involves two
divergent species. Figure 5(d) shows the phylogenetic net-
work that consists of the organismal tree and the two HGT
events. Since divergent events span a larger distances than
close ones, we expect their detection to be easier.

For each of the three phylogenetic networks shown in
Figure 5, we used the Seq-gen tool [20] to evolve 30
datasets of DNA sequences of length 1500 down the organ-
ismal tree and DNA sequences of length 500 down the other
tree contained inside the network. Both sequence datasets
were evolved under the K2P+γ model of evolution, with
shape parameter 1 [13]. Finally, we concatenated the two
datasets, solved the FTMPPN exhaustively on the organis-
mal tree and concatenated sequence dataset, and compared
the resulting network against the model network. In our ex-
periments, we used blocks of 500 nucleotides. To compute
the parsimony score of a leaf-labeled phylogenetic tree, we
used the PAUP* tool [23].

4.2 Results

We investigate three main questions. (1) Can we infer,
based on parsimony, the number of HGT events that oc-
curred during the evolution of a set of sequences? (2) How
does the parsimony score of the best phylogenetic network
computed compare to the parsimony score of the model net-
work? (3) How does the parsimony criterion perform in re-
constructing the actual HGT events?

Figures 6 and 7 answer the first question. In Figure 6(a),
we observe that, for each of the 30 datasets, the optimal par-
simony scores are almost identical, regardless of the num-



Tree2NetTrees(N , numH)
bestScore = maxV al;
Net2Nets(N , 0, numH , bestScore);

Net2Nets(N , curH , numH , bestScore)
for each pair of edges (e1, e2)

if (IsLegalHGT(N , e1, e2)
∧

HasEffect(N , e1, e2))
CreateNetwork(N , N

′
);

AddHGT(N
′
, e1, e2);

if (curH == numH)
Net2Trees(N

′
, numH , score);

if (newScore < bestScore) bestScore = newScore;
else

Net2Nets(N
′
, curH + 1, numH , bestScore);

Net2Trees(N , numH , score)
for(i = 0; i < 2numH ; i + +)

TreeGen(N , T , numH);
TS = TS

⋃
T ;

score =CompNetMPScore(TS, S);

Figure 2. Tree2NetTrees generates all possible networks from a given tree. For networks with more
than one HGT edge, the Net2Nets produces networks by adding edges to networks. The Net2Trees
procedure computes the set of all trees contained inside a network, computes the parsimony of a
set of sequences on each tree (by calling PAUP*), and then computes the parsimony of the network.
Procedure IsLegalHGT verifies that the resulting network does not violate the time co-existence
property, defined in Section 2. Procedure HasEffect excludes edges whose addition would not result
in new trees.

ber of edges added, which implies that no HGT events are
inferred. Indeed, these 30 datasets evolved in their entirety
down the organismal trees, and hence no HGT events were
present.

Figures 6(b) and 6(c) show the results on datasets whose
evolution involves a single HGT event, between two closely
related species in the former, and distantly related in the
latter. Figure 6(c) show a much sharper decrease in the
optimal parsimony score when adding the first edge, com-
pared to the decrease when adding a second edge. In this
case, stopping after the first edge is easily determined. The
contrast between the effects of adding the first and second
edges is not as clear when the HGT event is between two
closely related species, which is expected (shown in Fig-
ure 6(b)). Figure 6(d) shows a similar trend, yet the de-
crease in the parsimony score after adding the first edge is
not very large, which is a reflection of the hardness of de-
tecting HGT events between closer organisms. In this case,
the parsimony criterion may underestimate the number of
HGT events. However, we predict that if both HGT events
were between divergent organisms, we would see a sharper
decrease in the parsimony score when adding the second

edge.

Figure 7 summarize the previous results in a clearer pic-
ture. When the sequences evolve with no HGT, there is an
extremely slow decrease in the parsimony score. In the case
of a single HGT event between two divergent organisms,
there is a sharp decrease after adding one edge, and then the
decrease starts leveling. Similar results are observed for the
case of the single HGT event between closely related organ-
isms. For the case of two HGT events, the decrease starts
leveling at the second edge (from partial results that we ob-
tained on adding a third edge, the decrease in the parsimony
score after adding the second edge is negligible). There-
fore, depending on the location of the HGT events, a clear
threshold in most cases can be drawn so as to estimate the
correct number of HGT events.

Figures 8 and 9 answer the second question, namely how
the opitmal parsimony scores computed compare to the par-
simony score of the model network. The results show that
these two scores are identical in almost all cases. These re-
sults clearly exhibit the quality of parsimony as a criterion
for reconstructing phylogenetic networks.

To answer the third question, and since the underlying



if (myrank = 0) read and process command line;
if (myrank = 0) send input parameters to all by broadcasting;
if (myrank �= 0) receive input parameters from Processor 0;
read in tree and create networks;
for (i = 1; i <= totNets; i + +)

if (myrank = (j − 1) % nprocs) create network Ni;

Figure 3. A static scheduling algorithm.

SCHEDULER:
for each way of adding the first HGT edge h

wait request from the next available worker;
assign the worker to generate networks by first adding h;

notify all workers that all work is assigned;
WORKERS:

send request for work to the SCHEDULER;
receive assignment (adding h) from the SCHEDULER)

generate networks by adding h as the first HGT edge;

Figure 4. A dynamic scheduling algorithm.

organismal tree in fixed in our experiments, we compared
the HGT events inferred by the parsimony criterion against
the HGT events in the model networks as follows. Let X1

and Y1 be the sets of taxa under the source and target nodes,
respectively, of the HGT events in the model network, and
let X2 and Y2 be the sets of taxa under the source and tar-
get nodes, respectively, of the HGT events in the inferred
network. We define

∆HGT =
|X1∆X2|
|X1 ∪ X2|

+
|Y1∆Y2|
|Y1 ∪ Y2|

,

where A∆B denotes the symmetric difference between the
two sets A and B. If the two HGT events are identical, we
have ∆HGT = 0; when they are totally different, we have
∆HGT = 1. Figure 10 shows that the parsimony criterion
did not compute a network that is identical to the model net-
work in only four out of 60 cases, which is very impressive.
The figures also show that the parsimony criterion in some
cases return more than one optimal network, but usually one
of them is identical to the model network (this is similar to
the behavior of parsimony on trees as well).

5 Conclusions

In this paper we provided the first empirical proof of
the appropriateness of parsimony as a criterion for both re-
constructing and evaluating the quality of phylogenetic net-
works. Now that the quality of the criterion has been es-
tablished, efficient algorithms and heuristics for solving the
problems outlined in the paper are needed.
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Figure 6. The minimum parsimony score found by adding no additional edges, 1 edge, and 2 edges.
The results in (a)–(d) were obtained on datasets that evolved down the networks in Figures 5(a)–(d),
respectively.
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Figure 7. The rate of parsimony score decrease as a function of the number of edges added when
solving the FTMPPN problem on the sequence datasets evolved down each of the four networks in
Figure 5. Each point in the graph is the average of 30 results. SD0–SD3 correspond to datasets that
evolved with zero, one (close), one (divergent), and two HGT events, respectively.
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Figure 8. The minimum parsimony score computed, compared to the parsimony score of the model
network. The results in (a) and (b) were obtained on datasets that evolved down the networks in
Figures 5(b) and 5(c), respectively.
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Figure 9. The minimum parsimony score computed, compared to the parsimony score of the model
network. The results were obtained on datasets that evolved down the network in Figure 5(d).
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Figure 10. The accuracy of the HGT events, as measured by ∆HGT , inferred by the parsimony
criterion. The results in (a) and (b) were obtained on datasets that evolved down the networks in
Figures 5(b) and 5(c), respectively.


