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Abstract

This paper proposes a tree decomposition of protein
structures, which can be used to efficiently solve two key
subproblems of protein structure prediction: protein thread-
ing for backbone prediction and protein side-chain predic-
tion. To develop a unified tree-decomposition based ap-
proach to these two subproblems, we model them as a
geometric neighborhood graph labeling problem. Theo-
retically, we can have a low-degree polynomial time al-
gorithm to decompose a geometric neighborhood graph
G = (V, E) into components with size O(|V |

2

3 log |V |).
The computational complexity of the tree-decomposition
based graph labeling algorithms is O(|V |∆tw+1) where ∆
is the average number of possible labels for each vertex
and tw(= O(|V |

2

3 log |V |)) the tree width of G. Empiri-
cally, tw is very small and the tree-decomposition method
can solve these two problems very efficiently. This pa-
per also compares the computational efficiency of the tree-
decomposition approach with the linear programming ap-
proach to these two problems and identifies the condition
under which the tree-decomposition approach is more effi-
cient than the linear programming approach. Experimen-
tal result indicates that the tree-decomposition approach is
more efficient most of the time.

1 Introduction

The structure of a protein plays an instrumental role in
determining its functions. Protein structures are impor-
tant for the understanding of life process and drug discov-
ery. However, existing experimental methods such as X-ray

crystallography and NMR techniques cannot generate pro-
tein structures in a high throughput way. In order to pro-
duce protein structures in a large scale, NIH has launched
a protein structure initiative. This initiative aims to experi-
mentally determine a few thousands of unique protein struc-
tures within 10 years so that most of new proteins can have
a similar structure in the Protein Data Bank (PDB). There-
fore, the structures of these new proteins can be predicted
using template-based methods such as homology modeling
and protein threading. Computational approaches to protein
structure prediction are becoming useful and successful, as
demonstrated in recent CASP competitions [1, 2, 3]. In-
deed, protein structure prediction tools have been routinely
used by structural biologists and pharmaceutical companies
to analyze the structural features and functional characteris-
tics of a protein.

Generally speaking, the 3D structure of a new protein
is predicted in the following four steps. First, the back-
bone skeleton of a protein is predicted using a backbone
prediction technique such as protein threading and homol-
ogy modeling. Secondly, loops are added to connect the
backbone segments together to form a complete backbone
conformation. The first two steps are usually conducted in
a single step if the ab inito folding method is used to pre-
dict the structure of a protein. Then side-chain orientation
is assigned so that we have a full-atom model for the new
protein. Finally, some molecular dynamic simulation tech-
niques can be used to further refine the predicted structure.

Unfortunately, both the protein threading problem and
the protein side-chain prediction problem are NP-hard [4,
5, 6, 7]. Many heuristic algorithms and programs have been
developed to solve these two problems [8, 9, 10, 11, 12,
13, 14, 15]. In this paper, we present a tree-decomposition
based approach to decompose a protein structure into some



small pieces. This tree-decomposition method enables us
to solve both the protein threading problem and the pro-
tein side-chain prediction problem. In order to solve these
two problems using the same method, we formulate them
to a geometric neighborhood graph labeling problem. Ex-
perimental results show that using the tree-decomposition
method, we can solve both problems very efficiently. The
tree-decomposition based approach to the threading prob-
lem runs faster than the linear programming approach
[16, 17] most of the time. We also identify the condition un-
der which the tree-decomposition approach is more efficient
than the linear programming approach. If we combine both
approaches, then we can achieve a better efficiency than any
single method.

The major contributions of this paper are: (i) formulat-
ing both the protein threading problem and the side-chain
prediction problem into a sparse graph labeling problem;
(ii) proposing a tree-decomposition based approach to the
protein threading problem; and (iii) identifying the rule by
which we can easily tell for a given threading instance,
which method is more efficient, the tree-decomposition ap-
proach or the linear programming approach.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates the threading problem and the side-chain
packing problem into a geometric graph labeling problem.
In Section 3, we introduce the concept of tree decompo-
sition, several different tree-decomposition methods, and
tree-decomposition based label assignment algorithm. The-
oretically, a low-degree polynomial-time algorithm exists
to decompose a sparse geometric neighborhood graph into
some components of size O(|V |2/3 log |V |). In Section
4, we present the experimental results of our algorithm in
detail and compare the tree-decomposition based approach
with the linear programming approach in terms of compu-
tational efficiency and prediction accuracy. Finally, Section
5 draws some conclusions.

2 Problem Formulation

This section briefly introduces the protein threading
problem and the side-chain prediction problem and then for-
mulate them to a geometric neighborhood graph labeling
problem.

2.1 Protein Threading

Here we briefly introduce the protein threading problem.
For its detailed description, please refer to Xu et al.’s paper
[16, 17]. Protein threading is one of the most successful
methods for protein structure prediction. It is a pattern-
matching or template-based structure prediction method.
Protein threading predicts the structure of a new protein
by first aligning its sequence to all the existing structures

and then finding the structure with the best alignment to the
sequence. An existing structure is also called a structural
template. The basic premise of protein threading is that
in nature there are only a few thousands of unique protein
structures. Therefore, most new proteins can find a similar
structure in PDB.

A structural template can be modeled using a template
contact graph as follows. The primary structure of a tem-
plate is parsed as a linear series of cores with a connecting
loop between two adjacent cores. Cores are the most con-
served segments in a protein structure. When aligning a
protein sequence with structure to be predicted to a tem-
plate, alignment gaps are confined to loops. The biological
justification is that cores are so conserved that the chance
of insertions or deletions within them is very slim. We con-
sider only interactions between residues in the cores. It is
generally believed that interactions involving loop residues
can be ignored as their contribution to fold recognition is
relatively insignificant. We say that an interaction exists be-
tween two residues if the spatial distance between their Cβ

atoms is within 7Ȧ and they are at least 4 residues apart
along the template sequence. We say that an interaction
exists between two cores if there exists at least one inter-
residue interaction between the two cores. We can model
a protein structural template using a template contact graph
G = (V, E). Each template core is represented by a vertex
in V . There is one edge between two cores if and only if an
interaction exists between them.

Therefore, the protein threading problem can be formu-
lated as follows [16, 17]. Let D[i] denote the set of possible
alignment positions for core i. For each possible alignment
position l ∈ D[i], there is an associated singleton score,
denoted by Si(l). This singleton score measures how well
to align core i to sequence position l. In our energy func-
tion, Si(l) includes mutation score, environmental fitness
score and secondary structure score. For any two alignment
positions l ∈ D[i] and k ∈ D[j] (i 6= j), there is also an as-
sociated pairwise score, denoted by Pi,j(l, k), if there is an
edge between core i and core j. Pi,j(l, k) is the interaction
score between cores i and j when their alignment positions
are l and k, respectively. In the sequence-template align-
ment, there is no crossover allowed. That is, if i < j, then
k must be larger than l plus the length of core i. In order to
guarantee a valid alignment, we can set Pi,j(l, k) to be +∞
when crossover occurs. For the alignment involved with the
loop regions of a template, some gaps may exist. In order to
penalize gaps, the scoring function also contains some gap
penalty. Assume that core i is aligned to sequence position
A(i). The quality of this sequence-template alignment is
measured by the following energy function.

E(G) =
∑

i∈V

Si(A(i)) +
∑

i 6=j,(i,j)∈E

Pi,j(A(i), A(j)) (1)



The smaller the system energy E(G) is, the better the
sequence-template alignment.

2.2 Protein Side-Chain Prediction

Assume that we have a protein backbone structure, the
task of side-chain prediction is to assign a side-chain con-
formation to each backbone position. Usually, for each
backbone position, there are many possible side-chain con-
formations (also called rotamers), each with an occurring
probability. When we assign side chains to the backbone,
we need not only to pick up those side-chain conformations
with high occurring probability, but also to avoid as many
atomic clashes as possible. Two atoms clash if and only
if their distance is less than the sum of their radii. For a
detailed description of the side-chain prediction problem,
please refer to Xu’s paper [18]. The side-chain prediction
problem can be formulated as follows. We use a residue
interaction graph G = (V, E) to model the residues in a
protein and their potential clash relationship. Each vertex
in V denotes the center of one residue. Let D[i] denote the
set of possible rotamers for residue i. Two residues have po-
tential atomic clashes if some of their roatmers have atomic
clashes. We add one interaction edge between two residues
if they have potential clahses. For each rotamer l ∈ D[i], we
use Si(l) to denote its associated singleton score, which is
the interaction energy between rotamer l and the backbone
of the protein. The singleton score Si(l) also includes an
item reflecting the occurring probability of this rotamer. If
some atoms in two rotamers l ∈ D[i] and k ∈ D[j] (i 6= j)
clash, then we use Pi,j(l, k) to denote an interaction score
between these two roatmers, which is the clash penalty be-
tween them. Given a side-chain assignment A(i) ∈ D[i] to
residue i (i ∈ V ), the quality of this side-chain packing is
measured by the following energy function.

E(G) =
∑

i∈V

Si(A(i)) +
∑

i6=j,(i,j)∈E

Pi,j(A(i), A(j)) (2)

The smaller the system energy E(G) is, the better the side-
chain assignment.

2.3 Graph Labeling Problem

Both the protein threading problem and the protein side-
chain prediction problem can be formulated as a problem of
assigning some labels to a sparse geometric neighborhood
graph G = (V, E). In a geometric neighborhood graph,
each vertex v in V represents a point in <3 and v can be
adjacent to only those vertices that are spatially close to it.
That is, no edge exists between two vertices if their spatial
distance is beyond a cutoff Du. Both the template contact
graph and the residue interaction graph are a sparse geo-
metric neighborhood graph. First, a vertex in these two

graphs represent a geometric object and can be treated as a
3D point. Secondly, in the protein template, the core length
is much smaller compared to the template length. We can
assume that the core length is constant. So there is no in-
teraction edge between two cores if their spatial distance
is large. For the side-chain packing problem, each rotamer
has a constant diameter and is bounded to its backbone po-
sition by a constant distance. So there is no edge between
two backbone positions (residues) if their distance is be-
yond a constant distance. In addition, in a normal protein,
the distance between two residues cannot be too close. This
indicate that each vertex v can only be adjacent to a limited
number of vertices. Therefore, both the template contact
graph and the residue interaction graph are a sparse geo-
metric neighborhood graph.

Both the protein threading problem and the side-chain
prediction problem can be formulated into a sparse geomet-
ric neighborhood graph labeling problem as follows. In the
threading problem, each possible sequence alignment po-
sition for a single core can be treated as a possible label
assignment to a vertex in G. For the side-chain prediction
problem, a possible label assignment to a vertex represents
a possible side-chain conformation. Let D[i] denote the set
of possible label assignments to vertex i. For each possible
label assignment l ∈ D[i], there is an associated single-
ton score, denoted by Si(l). This singleton score measures
how well to assign label l to vertex i. For any two label
assignments l ∈ D[i] and k ∈ D[j] (i 6= j), there is also
an associated pairwise score, denoted by Pi,j(l, k), if there
is an edge between vertex i and vertex j. Pi,j(l, k) is the
interaction score between vertices i and j when their label
assignments are l and k respectively. Given a label assign-
ment A(i) ∈ D[i] to vertex i (i ∈ V ), the quality of this
assignment is measured by the following energy function.

E(G) =
∑

i∈V

Si(A(i)) +
∑

i 6=j,(i,j)∈E

Pi,j(A(i), A(j)) (3)

The smaller the system energy E(G) is, the better the la-
bel assignment. Our goal is to optimize the above energy
function to obtain the best label assignment.

3 A Tree-Decomposition Approach to The
Graph Labeling Problem

In this section, we first introduce the concept of tree de-
composition, then describe several different methods to de-
compose a graph into a tree decomposition, and finally de-
scribe how to search for the optimal label assignment based
on the tree decomposition of a graph.



3.1 Tree Decomposition

Tree decomposition of a graph has been introduced
by Robertson and Seymour [19] since a long time ago.
The technique of decomposing a sparse graph to its tree-
decomposition has been applied to many NP-hard problems
such as frequency assignment problem [20] and Bayesian
inference [21].

Definition 3.1 Let G = (V, E) be a graph. A tree decom-
position of G is a pair (T, X) satisfying the following con-
ditions:

1. T = (I, F ) is a tree with a node set I and an edge set
F ,

2. X = {Xi|i ∈ I, Xi ∈ V } and
⋃

i∈I Xi = V . That
is, each node in the tree T represents a subset of V and
the union of all the subsets is V,

3. for every edge e = {v, w} ∈ E, there is at least one
i ∈ I such that both v and w are in Xi, and

4. for all i, j, k ∈ I , if j is a node on the path from i to k

in T, then Xi

⋂
Xk ⊆ Xj .

The width of a tree decomposition is maxi∈I(|Xi| − 1).
The tree width of a graph G, denoted by tw(G), is the min-
imum width over all the tree decompositions of G.

Figure 1 and 2 give an example of a graph and one of
its tree decompositions, respectively. The width of a tree
decomposition is a key factor in determining the computa-
tional complexity of all the tree-decomposition based algo-
rithms. The smaller the width of a tree decomposition is,
the more efficient the tree decomposition based algorithms.
Therefore, we need to optimize the tree decomposition of a
graph such that we can have a very small tree width.
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Figure 1. Example of a graph.
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Figure 2. Example of a tree decomposition
with width 3.

3.2 Algorithms for Tree Decomposition of A
Graph

The optimal tree decomposition of a general graph is NP-
hard [22], which means it is unlikely to find the optimal
tree-decomposition of a graph within polynomial time. The
graph discussed in this paper has two special features: (i)
the graph is a geometric neighborhood graph and (ii) the
graph is also sparse. Therefore, using the sphere separator
theorem [23], we can have a low-degree polynomial-time
algorithm to decompose the graph into some components
with size O(Du

Dl
|V |

2

3 log |V |) [18]. Strictly speaking, we
have the following theorem.

Theorem 3.2 Let G = (V, E) denote a graph describing
the relationship among a set of 3D points. The distance
between any two vertices in G is at least a constant Dl

and the distance between any two adjacent vertices is no
more than Du. There is a low-degree polynomial-time al-
gorithm to decompose G into some components with size
O(Du

Dl
|V |

2

3 log |V |).

The sphere separator based tree decomposition algo-
rithm is not easy to implement. Besides this theoretically-
sound tree decomposition method, many heuristic-based
tree decomposition methods exist in the literature. Later in
this paper we will compare the performance of six heuristic-
based tree decomposition algorithms and show that some
work very well in practice. The graph under considera-
tion can be decomposed into some very small components,
which leads to a very efficient tree-decomposition based
graph labeling algorithm. Here we describe six different
tree decomposition algorithms.

Method 1: minimum vertex separator This method
recursively partitions a graph into two disconnected sub-
graphs using a minimum vertex separator [24]. Finally,
we get a tree with separators being the internal nodes and
the final subgraphs being the leaf nodes. All the vertices
along the path from the tree root node to any tree node
form a decomposition component. Given an undirected



graph G = (V, E), a vertex set S is called an (a, b)-vertex-
separator if it satisfied (i) {a, b} ⊂ V \ S and (ii) every
path connecting a and b in G passes through at least one
vertex contained in S. Among all the separators, the one
with the minimum cardinality is called the minimum (a,b)-
vertex-separator.

Method 2: two-way-1/2-triangle This method is similar
to the minimum vertex separator method. The only differ-
ence is that this method uses a minimum 1/2-balanced ver-
tex separator rather than the minimum vertex separator. The
“1/2-balanced” vertex separator always partitions a graph
into two subgraphs, each containing no more than one half
of all the vertices.

Method 3: two-way-2/3-triangle This method is similar
to the two-way-1/2-triangle method. The only difference is
that this method uses a minimum 2/3-balanced vertex sep-
arator rather than a minimum 1/2-balanced vertex separa-
tor. The “2/3-balanced” vertex separator always partitions
a graph into two subgraphs, each containing no more than
two thirds of all the vertices.

Method 4: minimum-degree It is a heuristic algorithm
that iteratively chooses one vertex and form a decomposi-
tion component based on this vertex [25]. At each iteration,
this method chooses a vertex with the smallest number of
neighbors and add edges to the graph such that any two
neighbors of the selected vertex is connected by an edge.
The selected vertex with its neighbors form a partition of
the graph. Then, this method removes the selected vertex
from the graph and recursively choose the next vertex until
the graph is empty.

Method 5: minimum-width It is a heuristic method sim-
ilar to the “minimum-degree” method. It differs from the
“minimum-degree” method in that this method does not add
edges to the neighbors of the chosen vertex.

Method 6: minimum-discrepancy It is a heuristic
method similar to the “minimum-degree” method. It dif-
fers from the “minimum-degree” method in that at each it-
eration, this method selects the vertex with the minimum
number of edges missing between its neighbors.

3.3 Tree Decomposition-Based Graph Labeling
Algorithms

Assume that we have a tree decomposition (T, X) of a
geometric neighborhood graph G. We describe an algo-
rithm to search for the optimal label assignment based on
the tree decomposition. For simplicity, we assume that tree

Xr

X

X

X k
j

i

Figure 3. A tree decomposition (T, X) of G.

T has a root Xr and that each node is associated with a
height. The height of a node is equal to the maximum height
of its child nodes plus one. Figure 3 shows an example of
a tree decomposition in which component Xr is the root.
Let Xr,j denote the intersection between Xr and Xj . If we
remove all the vertices in Xr,j , then this tree decomposition
becomes two disconnected subtrees. Let F (Xj , A(Xr,j))
denote the optimal label assignment of the subtree rooted
at Xj given that the label assignment to Xr,j is fixed to
A(Xr,j). Then F (Xj , A(Xr,j)) is independent of the rest
of the whole tree decomposition. Let C(j) denote the set of
child components of Xj and Score(Xj , A(Xj)) denote the
assignment score of component Xj with the label assign-
ment being A(Xj). Let D[X] denote all the possible label
assignments to the vertices in X . Therefore, we have the
following recursive equation.

F (Xj , A(Xr,j)) = min
A∈D[Xj−Xr,j ]

{
∑

i∈C(j)

F (Xi, A(Xj,i))

+Score(Xj , A(Xj))}

Based on the above equation, we can calculate the optimal
label assignment in two steps. First, we calculate the opti-
mal energy function from bottom to top and then we extract
the optimal label assignment from top to bottom.

Bottom-to-Top Starting from a leaf node i in the tree T ,
we assume that node j is the parent of i in T . Let Xj,i de-
note the intersection between Xi and Xj and D[Xj,i] the set
of all the possible label assignments to the vertices in Xj,i.
Given a label assignment A(Xj,i) ∈ D[Xj,i] to the vertices
in Xj,i, we enumerate all the possible label assignments to
Xi − Xj,i and then find the best label assignment such that
the energy of the subtree rooted at Xi is minimized. We use
F (Xi, A(Xj,i)) to denote this minimized energy. At the
same time, we also save the optimal assignment to Xi−Xj,i

for a given A(Xj,i) since in the top-to-bottom step we need
it for traceback. For example, in Figure 2, if we assume the
node acd is the root, then node defm is an internal node
with parent cdem. For each label assignment to vertices d,



e and m, we can find the best label assignment to vertex f

such that the energy of the subtree rooted at defm is min-
imized. In this bottom-to-top process, a tree node can be
calculated only after all of its child nodes are calculated.
When we calculate the root node of T , we enumerate all the
possible label assignments to this node and find the optimal
label assignment such that the energy is minimized. This
minimized energy is also the minimum energy of the whole
system.

Top-to-Bottom After finishing calculating the root node
of tree T , we obtain the optimal label assignment to this
root node. Now we trace back from the parent node to its
child nodes to extract out the optimal label assignment to
all the child nodes. Assume that we have the optimal label
assignment to node j and node i is a child of j. We can
easily extract out the optimal label assignment to Xi −Xj,i

based on the assignment to Xj,i since we have already saved
this label assignment in the bottom-to-top step. Recursively,
we can track down to the leaf nodes of T to extract out the
optimal label assignment to all the vertices in G.

In addition, based on the definition of tree decomposi-
tion, one vertex might occur in several tree nodes of the tree
decomposition of G. To avoid incorporating the singleton
score of this vertex into the overall system energy more than
once, we incorporate the singleton score of this vertex into
the system only when we are calculating the tree node with
the maximal height among all the nodes containing this ver-
tex. We can prove that there is one and only one such a tree
node. Similarly, an edge in graph G might also occur in
several tree nodes. We can use the same method to avoid
redundant addition of its pairwise score.

Based upon the above description, we have the following
lemma.

Lemma 3.3 The tree-decomposition based label assign-
ment algorithm for a graph G = (V, E) has a computa-
tional complexity of O((|V | + |E|)∆1+tw) where ∆ is the
average number of possible labels for each vertex, and tw

is the width of the tree decomposition of G. The space com-
plexity of this algorithm is O(|V |∆tw).

4 Experimental Results

This section compares the computational efficiency of
the tree-decomposition approach and the linear program-
ming approach to protein structure prediction and identi-
fies the condition under which the tree-decomposition based
approach is more efficient than the linear programming ap-
proach. Both approaches can solve the problems to their op-
timal solutions. Therefore, both approaches have the same
prediction accuracy.

4.1 Protein Threading

Table 4.1 lists the performance of six heuristic-based
tree-decomposition methods for the decomposition of 5280
template contact graphs. Any two templates share no more
than 40% sequence identity. As shown in this table, the
minimum-degree and the minimum-discrepancy methods
are the best for the decomposition of the template contact
graphs. This table also indicates that more than 98% tem-
plate contact graphs can be decomposed into components
containing no more than 6 vertices if a good decomposition
method is employed.

Using the minimum-degree method to decompose a tem-
plate contact graph, the tree-decomposition based protein
threading method runs more efficiently than the linear pro-
gramming approach when the tree width of the decompo-
sition is no more than 5. To compare the computational
efficiency of the tree-decomposition based approach and
the linear programming approach, we randomly chose 1000
structural templates from RAPTOR’s template database and
100 sequences from the Lindahl’s benchmark [26], respec-
tively. Any two structural templates share no more than
40% sequence identity, so do any two sequences. We
threaded each sequence to each template using both ap-
proaches. Tested on a PC Linux box with a 1.7GHz CPU, it
takes the linear programming approach approximately 100
hours to finish all the 100,000 threading pairs and the tree-
decomposition approach approximately 58 hours. In our
experiment, we used the linear program solver CLP in the
COIN package to solve all the linear programs.

We further examine the condition under which the tree-
decomposition approach is better than the linear program-
ming approach. The running time of the tree-decomposition
based approach is related to both the tree width of the
tree decomposition, the template length and the sequence
length. We calculate the average running time of threading a
given sequence to all the templates with the same tree width.
In Figure 4, we use a ‘*’ to indicate that the linear program-
ming method is more efficient than the tree-decomposition
based method and a ‘.’ to indicate the reverse situation. As
shown in Figure 4, the tree-decomposition based method
runs faster than the linear programming approach when
the tree width is smaller than 5. From this figure we can
see that when the tree width is smaller than 5, the tree-
decomposition method is always more efficient than the lin-
ear programming method. If the tree width is equal to or
large than 5, the linear programming method is better if the
sequence length is large. When the tree width is equal to
5, the tree-decomposition based method is better if the se-
quence has no more than 350 residues. When the tree width
is equal to 6 or 7, the tree-decomposition based method is
better if the sequence length is less than 170. When the tree
width is equal to 8, the tree-decomposition based method



Table 1. Performance of six different tree decomposition methods. The numbers in this table are the
percentage of template contact graphs with a given treewidth.

tree decomposition method tree width average
≤ 2 3 4 5 ≥ 6 tree width

minimum vertex separator 18.13 10.53 11.86 12.33 47.16 5.676
two-way-1/2-triangle 18.86 20.25 16.52 22.92 21.46 4.121
two-way-2/3-triangle 21.19 14.53 29.72 19.05 15.51 3.874

minimum-degree 22.97 34.41 31.12 9.53 1.97 3.198
minimum-width 22.92 27.35 25.72 13.84 10.34 3.565

minimum-discrepancy 22.95 34.39 31.93 9.09 1.63 3.185

is better if the sequence length is less than 150. In a sum-
mary, the trend is that when the tree width is big and the
sequence is long, then the linear programming method is
better than the tree-decomposition method, otherwise the
tree-decomposition method is better.

We can further improve the computational efficiency
by combining these two methods. That is, we use the
tree-decomposition based approach to the protein threading
problem when one of the following conditions is satisfied:
(i) the template tree width is smaller than 5; or (ii) the tem-
plate tree width is equal to 5 and the sequence has no more
than 350 residues; or (iii) the template tree width is less than
9 and the sequence has no more than 150 residues. Other-
wise, we use the linear programming approach. Then the
total running time of threading all the 100,000 pairs can be
improved to 52 hours, which is approximately half of the
running time of the linear programming approach.

Both the tree-decomposition based approach and the lin-
ear programming approach have the same prediction accu-
racy. We compare the prediction accuracy of these two ap-
proaches using thirty CASP6 test proteins, which were re-
leased from June 2004 to August 2004. These test proteins
are available at the CASP6 website. The template database
was generated from the PDB database in April 2004. In to-
tal there are about 5000 templates and any two templates
share no more than 40% sequence identity. Table 2 lists the
best template predicted for each test protein using two dif-
ferent threading approaches (�i.e., linear programming and
tree-decomposition). Both approaches generate the same
top template for each test protein.

4.2 Protein Side-Chain Prediction

Table 3 lists the performance of six heuristic-based
tree-decomposition methods on the 178 residue interaction
graphs generated from 178 test proteins used by SCWRL
[27]. This table indicates that both the minimum-degree
and the minimum-discrepancy methods are the best. Using
these two methods, all the residue interaction graphs can

be decomposed into components containing no more than 7
residues.

The linear program formulation used in protein structure
prediction package RAPTOR [16, 17] can also be used to
solve the side-chain prediction problem. We implemented
the linear programming approach to the side-chain predic-
tion problem in order to compare the computational effi-
ciency of the tree-decomposition based approach and the
linear programming approach to the side-chain prediction
problem. The experimental result indicates that the tree-
decomposition based side-chain prediction algorithm runs
slightly faster than the linear programming method. For the
tree-decomposition based approach, we use the minimum-
degree heuristic method to decompose all the residue inter-
action graphs. For the linear programming approach, we
use the linear programming solver CLP in the COIN pack-
age to solve all the linear programs. Table 4 lists the com-
putational time of both methods. The tree-decomposition
based approach is slightly more efficient than the linear pro-
gramming approach to the side-chain prediction problem.

We also compared the side-chain prediction accu-
racy of the linear programming approach and the tree-
decomposition approach. For the tree-decomposition ap-
proach, we tested the above six different tree-decomposition
generation methods. All the methods give the same predic-
tion accuracy as the linear programming approach.

5 Conclusions

In this paper we presented a unified model to formulate
the two key subproblems of protein structure prediction:
protein threading and protein side-chain prediction. This
unified model enables us to use a tree-decomposition based
approach or a linear programming approach to solve both
subproblems in a very similar way. Both approaches have
their own advantages, but the tree-decomposition based ap-
proach is more efficient than the linear programming ap-
proach. We also obtained the rule by which for a given
threading pair, we can easily choose the approach that is the
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Figure 4. Computational efficiency of tree-decomposition based approach and linear programming
approach to the protein threading problem. A ‘*’ indicates that the linear programming approach is
better, while a ‘.’ indicates that the tree-decomposition based approach is better.

most efficient for aligning this pair. Combing these two ap-
proaches, we can achieve a better computational efficiency
than any single method.
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