CSB2008 Predicting flexible length linear B-cell epitopes

Predicting flexible length linear B-cell epitopes

Yasser EL-Manzalawy*, Drena Dobbs, Vasant Honavar

Artificial Intelligence Laboratory, Department of Computer Science, Center for Computational Intelligence, Learning, and Discovery, Iowa State University, Ames, IA 50010, USA. yasser@iastate.edu

Proc LSS Comput Syst Bioinform Conf. August, 2008. Vol. 7, p. 121-132. Full-Text PDF

*To whom correspondence should be addressed.


Identifying B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting B-cell epitopes are highly desirable. We explore two machine learning approaches for predicting flexible length linear B-cell epitopes. The first approach utilizes four sequence kernels for determining a similarity score between any arbitrary pair of variable length sequences. The second approach utilizes four different methods of mapping a variable length sequence into a fixed length feature vector. Based on our empirical comparisons, we propose FBCPred, a novel method for predicting flexible length linear B-cell epitopes using the subsequence kernel. Our results demonstrate that FBCPred significantly outperforms all other classifiers evaluated in this study. An implementation of FBCPred and the datasets used in this study are publicly available through our linear B-cell epitope prediction server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.


[ CSB2008 Conference Home Page ] .... [ CSB2008 Online Proceedings ] .... [ Life Sciences Society Home Page ]