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Amyloidogenic regions in polypeptide chains are associated with a number of pathologies including neurodegenerative diseases. Recent 

studies have shown  that small regions of proteins are responsible for its amyloidogenic behavior.  Therefore, identifying these short peptides 

is critical for understanding diseases associated with protein aggregation.  Owing to the limitations of molecular techniques for the 

identification of fibril forming targets, it became apparent that clever computational techniques might enable their discovery in silico. We 

propose a machine learning based method to predict the amyloid fibril-forming short stretches of peptides using Support Vector Machine. The 

features of this method are based on the physicochemical properties of amino acids.  To get an optimal number of properties, a feature 

selection approach based on Genetic Algorithm is performed. The presented algorithm achieved a balanced prediction performance in terms of 

true positive and false positive rates in predicting a peptide status: amyloidogenic or non-amyloidogenic, which is not reflected in the existing 

methods. 
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1.   INTRODUCTION 

Amyloid fibril formation is widely observed in human 

diseases including common neurodegenerative 

pathologies such as, Alzheimer’s disease, Parkinson’s 

disease, and Huntington’s disease. In these diseases, 

proteins with unrelated sequences aggregate to form 

highly characteristic amyloid fibrils. Amyloid fibril 

formation occurs as a consequence of increase in β 
strands in amyloidogenic proteins. There is currently 

no effective treatment against these progressive 

disorders, most of which affect the brain in a 

devastating way. Therefore, it is of fundamental 

medical interest to understand the mechanisms of 

fibrillogenesis with the ultimate goal of determining the 

mature fibrils [1]. 

Recent studies prove that short, continuous and 

specific amino acid segments act as the major cause of 

amyloid fibril formation [2]. Therefore, understanding 

the mechanism of amyloid formation would lead to 

effective treatments for amyloid illnesses [4].  

As reviewed [1], there are many computational 

approaches used to investigate the regions most prone 

to form fibrils that result in protein aggregation. A 

review of existing computational methods for 

predicting protein aggregates is previously published 

[19].  

Some studies have implied that assembly into 

amyloid-like fibrils is an inherent property of 

polypeptides, irrespective of their sequence. However, it 

is obvious that some sequences are much more 

amyloidogenic than others. Moreover, some short 

peptides possess the same amyloid properties as full 

length proteins, and some very short specific stretches 

have been considered to be the regions responsible for 

aggregation, as they can change the amyloidogenic 

propensities of polypeptides by facilitating or inhibiting 

fibril formation. These data suggest that peptide 

sequence can influence amyloid fibril formation, and 

has inspired the recent development of a number of 

algorithms and models that predict the amyloidogenic 



 

or aggregation propensities of polypeptides or proteins 

[6]. 

In this study, our goal is to predict amyloidogenic 

regions of proteins. The proposed computational 

method is based on amino acid sequences. We use 

systematically selected physicochemical properties of 

amino acids to represent protein sequence features. 

Genetic Algorithm (GA) is utilized to reduce the 

dimension of properties. Finally, the Support Vector 

Machine (SVM) [7] is adopted to classify feature 

vectors as fibril forming and non-fibril forming 

peptides. 

 

2.   METHOD 

2.1.   Data set construction 

A dataset of six-residue peptides including positive and 

negative examples of fibril formation is collected from 

datasets namely Hexpepset [4], AmylHex and 

AmylFrag [8]. We term this new data set 

AmylHexpepset and use it to quantify the performance 

of our method. The Hexpepset dataset consists of 2452 

hexpeptides (1226 positive samples and 1226 negative 

samples). A set of 158 hexmers of which 67 have been 

shown to form fibrils and 91 have yielded negative 

results in fibril-forming assays constitute AmylHex. 

AmylFrag includes a set of 45 amyloidogenic fragments 

of proteins identified by various researchers. Finally, 

the AmylHexpepset dataset for training contains 1213 

positive samples and 1226 negative samples after 

removing the discrepancy among the samples in [4, 8] 

and the redundant samples from the source datasets. 

2.2.   Feature extraction 

As SVM requires each data instance to be represented 

as a vector of real numbers [7], the numerical values of 

physicochemical properties of amino acids are used to 

form the feature vector. These properties are extracted 

from Amino Acid index database in DBGet (Japan) 

(AAindex Version 9) [10] and ProtScale in Swiss 

Expasy [29]. Of the 544 indices in [10], only 216   

available in APDbase [30] and 30 in [29] were taken 

into account for the design.  Finally 246 indices are 

evaluated for potential use.  

2.3.   Feature selection 

Feature selection is a major challenge due to the 

prevalence of high dimensional data with some 

irrelevant or redundant features. One of the most 

fundamental problems in bioinformatics, and machine 

learning is how to select a small and relevant subset of 

features. As reviewed [14], there are different feature 

selection techniques including software packages exist 

for obtaining minimal feature sets in the field of 

bioinformatics domain. 

       The proposed approach of feature selection is a 

wrapper method based on GA with population size of 

10 and predetermined number of 100 generations, 

wrapped around the classifier, SVM to search for the 

significant minimal set of features that would improve 

the overall prediction performance. To achieve a 

significantly better performance in terms of prediction 

accuracy, a Perl script is programmed to extract an 

optimal feature set of 41 properties from 246 properties. 

All results of GA are obtained using LIBSVM [17] with 

a 10-fold cross validation on AmylHexpepset.  

2.4.   Building a model on training data 

The SVM classifier is trained with the Kernel RBF. 

Therefore, all the positive and negative hexpeptides 

from the training set are implicitly mapped from the 

input space to a feature space determined by the RBF 

kernel. In this feature space, an optimal hyperplane is 

learned by the SVM. In this regard, a suitable setting of 

the SVM parameter C which is used to control the 

tradeoff between training error and margin, and the 

RBF kernel parameter γ that controls the width of the 

kernel, are determined by a grid search with a 10-fold 

cross validation on the training dataset. The best set of 

parameters obtained for the selected feature set are 

obtained as C=4 and γ=0.25 to achieve best accuracy. 

 

3.   PREDICTION ASSESSMENT 

In a binary classification, given a classifier and an 

instance, there are four possible outcomes [18]. When a 

positive instance is classified correctly as positive, it is 

counted as a true positive (TP); however if it is 

classified wrongly as negative, it is counted as a false 

negative (FN). If the instance is negative and has been 

classified correctly, it is counted as a true negative 

(TN), otherwise it is counted as a false positive (FP). 



        

Sensitivity is measured as (TP / (TP + FN)), specificity 

as (TN / (TN + FP)), Classification accuracy (ACC) as 

(TP + TN) / (TP + TN + FP + FN) and Matthews 

Correlation Coefficient (MCC)  as (TP * TN – FP * 

FN) / √ (TN + FN) * (TN+FP) * (TP + FN) * (TP + 

FP).                                

 

4.   RESULTS  

The model presented in this paper was motivated by the 

computational challenging task of predicting fibril 

forming motifs in polypeptide sequences and has been 

tested on an independent dataset. The algorithm has 

shown
 

a good balance between sensitivity and 

specificity in predicting a peptide status compared to 

existing methods. The presented SVM based model 

classified the hexpeptides with an overall classification 

accuracy of .68, Matthews Correlation Coefficient of 

0.12, specificity of .71and sensitivity of .51.  

 

5.   CONCLUSION 

In our present study, kernel-based discriminative 

method, SVM that uses vector representations of 

sequences derived from 41 selected sequence properties 

is used for determining the amyloidogenic stretches in 

proteins solely from its primary sequence. The 

proposed method achieves an acceptable result and 

maintains equilibrium between true positive and false 

positive rates, when tested on the independent dataset. 

     The present method is a complement to 

experimental analysis that may find utility in many 

medically relevant applications, such as the 

engineering of protein sequences and the discovery of 

therapeutic agents that specifically target these 

sequences for the prevention and treatment of amyloid 

diseases. 
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