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Single Molecule Real Time (SMRT) sequencing is an innovative and potentially transformative next-generation ap-
proach for determining DNA sequences. It promises high accuracy, high throughput, long read lengths, and the ability
to resolve independent alleles from mixed templates. The new type of data produced from this approach requires
development of appropriate analytical algorithms and data management tools. Because the technology is based on
measurements from single molecules, stochastic effects have great impact on the observed results, and require statisti-
cal treatment. Here I present a computer model of this process, written in the R programming language. This makes
it possible to generate synthetic data with which to assess various analytical approaches, and to experiment with
reaction parameters to observe their expected effects on data quality. I also present methods to transform simulated
SMRT data into a format compatible with existing workflow tools, including the Phred base caller and the Staden
package for assembly and finishing.

1. INTRODUCTION

SMRT DNA sequencing is an exciting new tech-

nology under development at Pacific Biosciences

corporation.1, 2 Relative to competing approaches, it

offers long read length, high throughput, small reac-

tion volumes, massive parallelism, and rapid results.

It also allows direct distinction of alleles and isomor-

phic genes in mixtures; this would be quite useful in

many genotyping applications, such as tissue typing.

Although the fraction of polymerase molecules suc-

cessfully reading their templates decreases over time,

the quality of the surviving reads does not decline

with distance from the primer. This makes it possi-

ble to generate longer contiguous reads than from

approaches that rely on populations of molecules.

With these potential advantages, SMRT sequencing

may represent a dramatic breakthrough for practical

application of individualized genomics.

The SMRT approach is illustrated in Figure 1. A

single molecule of polymerase is immobilized within

a discernible volume of reaction solution. The poly-

merase binds a conventional primed template, and

extends the primer by incorporation of nucleotides

from γ-labelled dNTPs, where each of the four bases

is color-coded with one of four distinguishable fluo-

rophores. During incorporation, each successive nu-

cleotide is held in place on the polymerase complex

for a period of time before its label is released.

Fig. 1. Overview of the SMRT sequencing approach. A sin-
gle DNA polymerase molecule is anchored to a substrate. A
small volume of solution around the polymerase is illuminated
so that fluorophores within this volume can be detected. Flu-
orescent nucleotides are labelled at the gamma phosphate, so
the label is released once the nucleotide is incorporated. While
fluorophores free in solution diffuse in and out of the detec-
tion volume rapidly, the nucleotide being incorporated is held
in the detection volume for a much longer time. Reading se-
quence with this approach depends on being able to identify
the signal emitted by the immobilized base during incorpo-
ration above the background fluorescence of unincorporated
nucleotides; this can be posed as a statistical problem.

A small amount of solution surrounding the

polymerase molecule is exposed to UV light to excite

the fluorescent reporters. Unbound fluorophores dif-

fuse in and out of this volume, giving transient fluo-

rescent emissions, while the fluorophore from the nu-



cleotide bound to the polymerase is trapped within

the detection volume for a much longer time. The

technique relies on the ability to detect the single

dNTP being incorporated in the presence of free

fluorophores in the detection volume. The num-

ber of free fluorphores depends on both the detec-

tion volume and on the concentration of dNTPs. In

practice, dNTP concentrations must be kept high

enough to meet the requirements of the polymerase,

which means that the detection volume must be quite

small. A small volume is achieved by limiting the il-

luminated area to an aperture similar in scale to the

excitatory wavelength; this limits both the area and

the depth of penetration of the excitatory light into

the reaction solution.1

1.1. Conceptual model

We can model this process in stages. First, consider

the “pure signal” function, reflecting which type of

flurophore, if any, is bound to the polymerase at

any given time. The binding site can hold only one

molecule of dNTP, in one of the four colors, so this

function will have a value of either 0 or 1 in each

channel, and the channels will not overlap. The

‘peaks’ will be square, with width determined by the

amount of time the reporter from the nucleotide be-

ing incorporated is trapped on the polymerase. As-

suming there is some “refractory period” between re-

leasing the label from one dNTP and being ready to

capture the next, the peaks will also be guaranteed

to have some minimum space between them.

The spacing between square peaks is determined

by the time required for the polymerase to capture

a nucleotide to match the next position in the tem-

plate, plus the refractory period. Assume that the

polymerase has access to a certain volume of solu-

tion in its immediate neighborhood (its ‘capture vol-

ume’), and that it can quickly capture any dNTP

that diffuses into that volume. Then time can be

expressed in terms of the number of samplings it

takes to find the required nucleotide. If sampling

the dNTPs in the capture volume is a Poisson pro-

cess, the interval between arrivals of the desired base

will follow an exponential distribution.3

Two types of variability obscure this signal:

background from unincorporated nucleotides, and

noise from measurement variation.

Background is estimated using a simple stochas-

tic model of the number of unincorporated nu-

cleotides in the detection volume. The reaction so-

lution represents a large population of molecules,

where the nucleotide concentration describes the av-

erage number of dNTPs per volume. Because the de-

tection volume is very small, the number of molecules

it contains at any instant is a small sample taken

from this population, and can be modeled with a

Poisson distribution. Assuming that diffusion in and

out of the detection volume is fast relative to the time

required to measure the fluorophores, we can treat

each measurement as an average of many indepen-

dent instantaneous samples (snapshots), and avoid

modeling diffusion.

Finally, the process of measuring the fluores-

cence intensity is itself stochastic, where the numbers

of emitted photons can be modeled using a Poisson

distribution, as can shot noise from the photon de-

tection apparatus during signal amplification. While

the numbers of fluorophores in the detection volume

for any given snapshot are whole integers, measured

intensities are not. This is because they are averages

over many snapshots, and because the intensities of

photon and shot noise quanta are on different scales.

2. MATERIALS AND METHODS

This model was implemented in the R programming

language, which has excellent facilities for statisti-

cal analysis and graphics. Source code is available

from the cybertory.org website.4 The R interpreter is

freely available for all major computing platforms.5

2.1. Reaction parameters

The general description of the SMRT process, and

ballpark estimates of reaction parameters, are based

on statements gathered from the Pacific Biosciences

website1:

• fluorescence detection limits: low nanomolar con-

centrations

• detection volume: 20 zeptoliters (20e-21 l)

• incorporation time: tens of milliseconds

• dNTP visit time: a few microseconds



2.2. Data structures

Data for each step of the simulation is stored in a

ChannelIntensities data structure, which is a list of

four vectors of floating-point intensity values, one

for each color channel (reflecting one of the bases

A, C, G, or T). Each indexed position in the vector

represents a discrete time point. The model is im-

plemented as a series of transformations applied to

ChannelIntensities structures, as are the analyses of

the model output.

2.3. Data filtering and smoothing

A filter-style method takes a ChannelIntensities

structure as input, modifies it in some way, and re-

turns the modified version. Several of these filters

apply a sliding window of fixed width, where the out-

put value of the central point is a function of all the

points in the input window. The size of the window

is described by its radius, the number of input data

points to consider on either side of the central out-

put point. Examples of simple filters include taking

the mean of the sliding window to perform simple

smoothing, or taking the minimum or median value.

Such filters make it easy to experiment by combining

them in various ways.

2.4. Statistical model

Plotting the intensities from one channel of a com-

plete read as a histogram shows signal and back-

ground peaks. (Four such histograms, from reactions

run at four different dNTP concentrations, are shown

in Figure 4.) At higher concentrations, the peaks are

shifted toward higher average intensities, and they

become broader. We can fit Gaussian curves (each

described by mean, standard deviation, and height)

to the histogram as follows: the background mean is

located at the highest point of the histogram. The

signal peak is one intensity unit greater than the

background, representing the single fluorophore from

the dNTP being incorporated. The area under the

background peak will be approximately three times

greater than that under the signal peak for a given

channel, depending on the base composition.

In a Poisson distribution, the mean and the vari-

ance are the same (standard deviation is the square

root of the variance). The standard deviation of

the distribution of sample means is the population

mean divided by the square root of the number of

samples.6 The standard deviation of the signal and

background peaks is estimated as the square root of

the mean (since the underlying distribution is Pois-

son), divided by the square root of the number of

samples, where the number of samples is the product

of the number of snapshots per measurement and the

number of photons per fluorophore (a model parame-

ter). Since the variances of the two peaks are similar,

the relative areas correspond to relative heights.

2.5. Statistical filtering

Given the positions of the signal and background

peaks, we can use sliding window filters based on

statistical tests. First, we use a one-sample t-test

where the output of the sliding window is the p-

value for the sample of measurements coming from

the signal population. This is divided by the sim-

ilarly computed probability that the sample comes

from the background population, and the logarithm

is taken. Positions where the log of the probability

ratio is positive are more likely to represent signal

than background. This log odds ratio is smoothed

by averaging, and only the positive values are re-

tained, showing the areas more likely to come from

signal than from background.

2.6. Sequence Chromatogram Format
(SCF)

SCF is a well-documented, non-proprietary binary

format for storing results of Sanger sequencing

experiments.7 This format can be read and written

by most of the software tools commonly used for

managing DNA sequencing projects.

Because intensities are recorded as 16-bit integer

values in SCF, the floating-point values from a Chan-

nelIntensities structure need to be scaled to fit into

a range of values between 0 and 65535. The floating

point values represent numbers of fluorphores, plus

or minus some measurement variation, and will gen-

erally be less than about 20 (depending on the dNTP

concentration); multiplying by about 1000 generally

produces acceptable scaling.



2.7. Base calling and assembly

Base calling was performed with Phred.8, 9 This

program is customized for different chemistries,

dyes, and machines, based on tags it reads from

the chromatogram file. The simulated chro-

matograms leave these tags blank, so a default

was set by using the -process_nomatch direc-

tive and adding the following line to phredpar.dat:

"" primer big-dye ABI_3700

Called SCF files were aligned using programs

pregap4 and gap4 from the Staden package.10

3. RESULTS

The output of two simulated SMRT sequencing reac-

tions are shown in Figures 2 and 3. The top panel in

each figure shows the “pure” signal, while the second

panel is “raw output”, with background and noise

added. Further analysis of the high [dNTP] data is

shown in Figures 4 and 5. Times given are approxi-

mately microseconds, but are labelled bogoseconds to

reflect the fact that the parameters in this model are

estimates taken from general descriptions, and have

not been fitted to actual experimental data.

3.1. Effects of nucleotide concentration

Figures 2 and 3 show reactions at low and high dNTP

concentration. A symptom of low [dNTP] is stochas-

tic peak spacing, which can complicate interpreta-

tion of the experimental data. If [dNTP] is too high,

background fluorescence begins to obscure the signal.

Intensities on the y-axes represent measured

numbers of fluorophores; values are not whole num-

bers because measurements are averages of multiple

snapshots, and because of stochastic effects of the

numbers of photons emitted by the fluorophores, and

shot noise during measurement.

3.2. Simple filtering of intensity data

Some simple approaches to signal filtering are shown

in the lower panels of Figures 2 and 3. Various

transformations of the raw data can reveal the signal

peaks. Here, a filter taking the minimum of a sliding

window is applied, followed by one taking the mean

to smooth out the resulting curve. Excessive smooth-

ing flattens the peaks (not shown). Signal recovery

is generally more challenging at higher [dNTP].
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Fig. 2. Simulated SMRT results at low nucleotide concen-
trations. Note the stochastic peak spacing, and the ease with
which the signal can be distinguished from background.
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Fig. 3. Simulated SMRT results at high nucleotide concen-
trations. This figure is like the previous one, but run with a
higher [dNTP]. The peaks are much more regularly spaced,
but the signal is more difficult to distinguish from the noise.
Note the ranges of the y-axes.
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Fig. 4. Fitting probability distributions to measured inten-
sity values. Intensity measurements from a single channel of
the high [dNTP] reaction in Figure 3 are plotted as a his-
togram. Two normal curves, representing signal and back-
ground, are fitted to this data. Their sum is shown in red.
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Fig. 5. Statistical filtering. A sliding-window t-test trans-
forms channel intensities into probabilities of the samples in
the window coming from the signal population. The probabil-
ity that the sample comes from the background population is
calculated similarly in the third panel. Taking the logarithm
of the ratio of the two p-values gives curves that reveal the
original signal (fourth panel). In the bottom panel, this curve
is smoothed by averaging, and limited to positive values.

3.3. Statistical filtering

As seen in Figure 4, the sum of the two Gaussian

curves fitted to the background and signal peaks out-

lines the histograms quite well. Figure 5 applies the

statistical filtering approach to the data from the

high [dNTP] reaction. The clean, easily interpreted

curves of the bottom panel are reminiscent of Sanger

chromatograms; this is the transformation used to

generate SCF files.

3.4. Base calling and assembly

Even using data with intentionally high background,

with arbitrarily selected default parameters (de-

signed to read Sanger sequencing reactions run with

big dye primers on an ABI 3700), the base caller

achieves an accuracy on the order of about one mis-

called base per hundred.

Fig. 6. Transformed simulated SMRT data in SCF format
can be successfully managed and analyzed using existing soft-
ware designed for Sanger chromatograms. Data from multi-
ple independent simulated SMRT reads from the same tem-
plate was transformed by statistical filtering and smoothing,
exported to SCF files, run through the Phred base caller,
and loaded into the Staden package to align and compare the
traces. This illustrates use of existing tools, originally designed
for Sanger sequencing, to assemble SMRT results and facili-
tate examining the data to resolve base calling discrepancies.

Phred adds the called bases to SCF files, which

can then be aligned and displayed using Staden, as

shown in Figure 6.



4. DISCUSSION

This simulation is helpful for understanding the

SMRT sequencing process because it makes it pos-

sible to conduct conceptual experiments with model

parameters and observe the expected effects on out-

put. It may useful for teaching the principles of the

approach, and possibly for training new users.

It would be interesting to see how well the model

parameters could be fitted to actual SMRT data, and

to evaluate base calling accuracy on real data using

the transformation process described. Parameters of

Phred (such as the expected background level and

peak spacing) could be optimized to SMRT data.

Alternatively, the data transformation might be ad-

justed to better suit the base caller. For example,

some level other than zero might be chosen as a cut-

off for the log-odds ratio, to adjust the baselines of

the curves. As can be seen in the last panel of Figure

5, the bottoms of the peaks extend below zero, in-

dicating that there may be useful information in the

negative side of the curves as well.

Converting the results to a form that can be

managed and analyzed using conventional tools is

potentially useful for two main reasons. First, it may

obviate the necessity of developing new data manage-

ment infrastructure, including software tools and a

workforce trained to use them. Second, it may allow

analyses to combine sequencing results from different

technologies. For example, in a shotgun sequencing

project one might use high throughput SMRT se-

quencing to generate the vast majority of the data,

while Sanger sequencing might be used in individual

primer walking reactions to resolve ambiguities and

connect contigs. This might be particularly useful in

the early stages of adoption of the new technology,

when types and rates of error are being evaluated.

This model currently ignores differences in nu-

cleotide incorporation rates due to template sequence

in the polymerase binding region.11 This would add

variability in peak spacing, though it would tend to

be minimized at high dNTP concentrations. Adding

such effects to the model would be straightforward.

More powerful data analysis approaches might

add experimental flexibility to the SMRT technique.

Specifically, better ability to read signals from high-

background data would facilitate use of higher dNTP

concentrations in reactions. This is desirable for sev-

eral reasons. First, bases are read more quickly,

which could improve throughput, minimize the dam-

age done to the template and polymerase by UV

light, and maximize processivity (and thus read

length). Also, the more predictable peak spacing ex-

pected at high dNTP concentrations would be help-

ful for base calling, and for comparing data from dif-

ferent reads, as is commonly done when resolving

ambiguities in Sanger traces.

Simulated data can be used to optimize analyt-

ical approaches for particular variations in experi-

mental design. For example, if the illumination in-

tensity were lowered, fewer photons would be emitted

per fluorophore, increasing measurement variance.

We can model this effect on the quality of output

data. Improved ways of extracting information from

this noisier data might make it possible to conduct

experiments with lower excitation fluxes, lessening

UV damage and further increasing read lengths.
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